Abstract
Many of the phenomena involved in turbomachinery flow can be understood and predicted on a two-dimensional (2D) or quasi-three-dimensional (Q3D) basis, but some aspects of the flow must be considered as fully three-dimensional (3D) and cannot be understood or predicted by the Q3D approach. Probably the best known of these fully 3D effects is secondary flow, which can only be predicted by a fully 3D calculation which includes the vorticity at inlet to the blade row. It has long been recognized that blade sweep and lean also produce fully 3D effects and approximate methods of calculating these have been developed. However, the advent of fully 3D flow field calculation methods has made predictions of these complex effects much more readily available and accurate so that they are now being exploited in design. This paper will attempt to describe and discuss fully 3D flow effects with particular reference to their use to improve turbomachine performance. Although the discussion is restricted to axial flow machines, many of the phenomena discussed are equally applicable to mixed and radial flow turbines and compressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.