Abstract

Let [Formula: see text] be Ramanujan’s tau function, defined by the discriminant modular form [Formula: see text] (this is the unique holomorphic normalized cuspidal newform of weight 12 and level 1). Lehmer’s conjecture asserts that [Formula: see text] for all [Formula: see text]; since [Formula: see text] is multiplicative, it suffices to study primes [Formula: see text] for which [Formula: see text] might possibly be zero. Assuming standard conjectures for the twisted symmetric power [Formula: see text]-functions associated to [Formula: see text] (including GRH), we prove that if [Formula: see text], then [Formula: see text] a substantial improvement on the implied constant in previous work. To achieve this, under the same hypotheses, we prove an explicit version of the Sato–Tate conjecture for primes in arithmetic progressions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.