Abstract
The pentadiagonal Toeplitz matrix is a special kind of sparse matrix widely used in linear algebra, combinatorics, computational mathematics, and has been attracted much attention. We use the determinants of two specific Hessenberg matrices to represent the recurrence relations to prove two explicit formulae to evaluate the determinants of specific pentadiagonal Toeplitz matrices proposed in a recent paper [3]. Further, four new results are established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.