Abstract

Environmental hydrogen embrittlement has become a non-negligible problem in the hydrogen blended natural gas transportation. To qualitatively study the degradation mechanism of X80 steel used in the natural gas pipelines, the slow strain tensile experiments are carried out in this work. The nitrogen and hydrogen are adopted to simulate the hydrogen blended natural gas to explore the tensile properties of X80 steel. According to the volume proportion of hydrogen, the test atmospheres are divided into the reference atmosphere and the hydrogen-contained atmospheres of 1%, 2.2% and 5%. The tensile experiments of the smooth and notched specimens are conducted in the above gas atmospheres. Mechanical properties and fracture morphologies after stretching are further analyzed. The results show that the hydrogen blended natural gas has little effect on the tensile and yield strengths. Distinguished from the hydrogen volume proportion of 1% and 2.2%, with the increase of hydrogen proportion, the effect of hydrogen on mechanical properties of specimens increases significantly. Moreover, the deteriorated mechanical properties of notched specimens are more seriously than those of smooth specimens. This work provides the basis for safe hydrogen proportion for X80 pipeline steel when transporting hydrogen blended natural gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.