Abstract

This paper presents formulas and asymptotic expansions for the expected number of vertices and the expected volume of the convex hull of a sample ofn points taken from the uniform distribution on ad-dimensional ball. It is shown that the expected number of vertices is asymptotically proportional ton (d−1)/(d+1), which generalizes Renyi and Sulanke’s asymptotic raten (1/3) ford=2 and agrees with Raynaud’s asymptotic raten (d−1)/(d+1) for the expected number of facets, as it should be, by Barany’s result that the expected number ofs-dimensional faces has order of magnitude independent ofs. Our formulas agree with the ones Efron obtained ford=2 and 3 under more general distributions. An application is given to the estimation of the probability content of an unknown convex subset ofR d .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.