Abstract
A digital search tree (DST) is a fundamental data structure on words that finds various applications from the popular Lempel–Zivʼ78 data compression scheme to distributed hash tables. The profile of a DST measures the number of nodes at the same distance from the root; it depends on the number of stored strings and the distance from the root. Most parameters of DST (e.g., depth, height, fillup) can be expressed in terms of the profile. We study here asymptotics of the average profile in a DST built from sequences generated independently by a memoryless source. After representing the average profile by a recurrence, we solve it using a wide range of analytic tools. This analysis is surprisingly demanding but once it is carried out it reveals an unusually intriguing and interesting behavior. The average profile undergoes phase transitions when moving from the root to the longest path: at first it resembles a full tree until it abruptly starts growing polynomially and oscillating in this range. These results are derived by methods of analytic combinatorics such as generating functions, Mellin transform, poissonization and depoissonization, the saddle point method, singularity analysis and uniform asymptotic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.