Abstract

A Markov-modulated risk process perturbed by diffusion is considered in this paper. In the model the frequencies and distributions of the claims and the variances of the Wiener process are influenced by an external Markovian environment process with a finite number of states. This model is motivated by the flexibility in modeling the claim arrival process, allowing that periods with very frequent arrivals and ones with very few arrivals may alternate. Given the initial surplus and the initial environment state, systems of integro-differential equations for the expected discounted penalty functions at ruin caused by a claim and oscillation are established, respectively; a generalized Lundberg’s equation is also obtained. In the two-state model, the expected discounted penalty functions at ruin due to a claim and oscillation are derived when both claim amount distributions are from the rational family. As an illustration, the explicit results are obtained for the ruin probability when claim sizes are exponentially distributed. A numerical example also is given for the case that two classes of claims are Erlang(2) distributed and of a mixture of two exponentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.