Abstract

Mutations in epigenetic pathways are common oncogenic drivers. Histones, the fundamental substrate for chromatin-modifying and remodeling enzymes, are mutated in tumors including in gliomas, sarcomas, head and neck cancers, and carcinosarcomas. Classical ‘oncohistone’ mutations occur in the N-terminal tail of histone H3 and impact the function of Polycomb Repressor Complexes 1 and 2. However, the prevalence and function of histone mutations in additional tumor contexts is unknown. Here we show that somatic histone mutations conservatively occur in ~ 4% of tumors of diverse types and in critical regions of histone proteins. Mutations occur in all four core histones, in both the N-terminal tails and globular histone fold domains, and at or near residues that harbor important post-translational modifications. Many globular domain mutations are either homologous to yeast mutants that abrogate the need for SWI/SNF function, occur in the key regulatory ‘acidic patch’ of histone H2A and H2B, or are predicted to disrupt the H2B-H4 interface. The histone mutation dataset (https://bit.ly/2GXH5Ve) and the hypotheses presented herein on the impact of the mutations on important chromatin functions should serve as a resource and starting point for the chromatin and cancer biology fields in exploring an expanding role of histone mutations in cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call