Abstract

In this study, we have investigated the positions of introns in the globin gene of Scapharca inaequivalvis homodimeric hemoglobin. We found the three exon/two intron organization typical of vertebrate globin genes, with the two introns in highly conserved positions, as it occurs in the A and B globin genes of the tetrameric hemoglobin from the same organism, confirming the absence of the so-called 'central intron' found in the globin genes of plants and of some invertebrates. We identified two homodimeric globin genes (3207 and 2723 bp) that differ only with respect to the size of the first intron. Sequence analysis of the two first introns (1668 and 1364 bp) has revealed that they are highly homologous, except for a 569- and 296-bp insertion in each intron I. Interestingly, the two first introns contain regions with an unusually high identity (approximately 80%) with regions of the first intron of the congeneric clam Anadara trapezia and the related clam Barbatia reveana globin genes, suggesting that these uncoding regions may have played a regulatory role that has subsequently been lost during the course of the evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.