Abstract
In this paper, the Ricker family (a population model) with quasiperiodic excitation is considered. The existence of strange nonchaotic attractors (SNAs) is analyzed in a co-dimension-2 parameter space by both theoretical and numerical methods. We prove that SNAs exist in a positive measure parameter set. The SNAs are nowhere differentiable (i.e., strange). We use numerical methods to identify the existence of SNAs in a larger parameter set. The nonchaotic property of SNAs is verified by evaluating the Lyapunov exponents, while the strange property is characterized by phase sensitivity and rational approximations. We also find that there is a transition region in a parameter plane in which SNAs alternate with chaotic attractors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.