Abstract

We solve the problem of existence of perfect codes in the Doob graph. It is shown that 1-perfect codes in the Doob graph D(m,n) exist if and only if 6m+3n+1 is a power of 2; that is, if the size of a 1-ball divides the number of vertices. Keywords: perfect codes, distance-regular graphs, Doob graphs, Eisenstein-Jacobi integers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.