Abstract
This article investigates the dynamical properties of a discrete time SIS-Epidemic model incorporating logistic growth rate and Allee effect. The forward Euler discretization method is employed to obtain the discrete-time model. All possible fixed points are identified including their local dynamics. Some numerical simulations by varying the step size parameter are explored to show the analytical findings, the existence of Neimark-Sacker bifurcation, and the occurrence of period-10 and 20 orbits
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.