Abstract

Let X be an infinite set and let and denote the propositions “every filter on X can be extended to an ultrafilter” and “X has a free ultrafilter”, respectively. We denote by the Stone space of the Boolean algebra of all subsets of X. We show: For every well‐ordered cardinal number ℵ, (ℵ) iff (2ℵ). iff “ is a continuous image of ” iff “ has a free open ultrafilter ” iff “every countably infinite subset of has a limit point”. implies “every open filter on extends to an open ultrafilter” implies “has an open ultrafilter” implies It is relatively consistent with that (ω) holds, whereas (ω) fails. In particular, none of the statements given in (2) implies (ω).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.