Abstract

The existence of time-periodic solutions of the boundary-layer type to a two-dimensional reaction–diffusion problem with a small-parameter coefficient of a parabolic operator is proved in the case of singularly perturbed boundary conditions of the second kind. An asymptotic approximation with respect to the small parameter is constructed for these solutions. The set of boundary conditions for which these solutions exist is studied and the local uniqueness and asymptotic Lyapunov stability are established for them. It is shown that, unlike the analogous Dirichlet problem, for which such a solution is unique, there can be several solutions of this kind for the problem under consideration, each of which has its domains of stability and local uniqueness. To prove these facts, results based on the asymptotic principle of differential inequalities are used. Keywords: , , , , , , .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.