Abstract

The handling of Na(+) and K(+) loads was investigated in isolated Malpighian tubules and in whole mosquitoes of Aedes aegypti. Isolated Malpighian tubules bathed in Na(+)-rich Ringer solution secreted Na(+)-rich fluid, and tubules bathed in K(+)-rich Ringer solution secreted K(+)-rich fluid. Upon Na(+) loading the hemolymph, the mosquito removed 77% the injected Na(+) within the next 30 min. The rapid onset and magnitude of this diuresis and the excretion of more Na(+) than can be accounted for by tubular secretion in vitro is consistent with the release of the calcitonin-like diuretic hormone in the mosquito to remove the Na(+) load from the hemolymph. Downstream, K(+) was reabsorbed with water in the hindgut, which concentrated Na(+) in excreted urine hyperosmotic to the hemolymph. Upon K(+) loading the hemolymph, the mosquito took 2 h to remove 100% of the injected K(+) from the hemolymph. The excretion of K(+)-rich isosmotic urine was limited to clearing the injected K(+) from the hemolymph with a minimum of Cl(-) and water. As a result, 43.3% of the injected Cl(-) and 48.1% of the injected water were conserved. The cation retained in the hemolymph with Cl(-) was probably N-methyl-d-glucamine, which replaced Na(+) in the hemolymph injection of the K(+) load. Since the tubular secretion of K(+) accounts for the removal of the K(+) load from the hemolymph, the reabsorption of K(+), Na(+), Cl(-), and water must be inhibited in the hindgut. The agents mediating this inhibition are unknown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call