Abstract
Comets represent some of the most pristine bodies in our solar system and can provide a unique insight into the chemical makeup of the early solar system. Due to their icy volatile-rich nature, they may have played an important role in delivering volatile elements and organic material to the early Earth. Understanding how comets form can therefore provide a wealth of information on how the composition of volatile elements evolved in the solar system from the presolar molecular cloud up until the formation of the terrestrial planets. Because noble gases are chemically inert and have distinct condensation temperatures, they can be used to infer the temperatures of formation and thermal history of cometary ices. In this work, we present a new experimental setup called EXCITING to investigate the origin and formation conditions of cometary ices. By trapping nitrogen and noble gases in amorphous water ice, our experiment is designed to study the elemental and isotopic behavior of volatile elements in cometary ice analogs. We report new results of noble gas and nitrogen enrichment in cometary ice analogs and discuss the limitations of the experimental conditions in light of those supposed for comets. We show that forming ice analogs at ∼70 K best reproduce the noble gas and N2 abundances of comet 67P/Churyumov–Gerasimenko, considering a solar-like starting composition. This formation temperature is higher than previous estimates for cometary ices and suggests that the formation of cometary building blocks may have occurred in the protosolar nebula rather than in the colder molecular cloud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.