Abstract

Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call