Abstract

ABSTRACT Observations of hyperfine resolved transitions of the hydroxyl radical (OH) are unique probes of the physical conditions in molecular clouds. In particular, hyperfine intensities can be used as an effective thermometer over a wide range of molecular densities. Accurate modelling of the OH emission spectra requires the calculation of collisional rate coefficients for the excitation of OH by H2, the most abundant collisional partner in the molecular clouds. Here, we determine hyperfine resolved rate coefficients for the excitation of OH by H2 using a recently developed highly accurate potential energy surface. State-to-state rate coefficients between the lower hyperfine levels were calculated using recoupling techniques for temperature ranging from 10 to 150 K. Significant differences were found with the earlier values currently used in astrophysical models, the new rate coefficients being larger than the previous ones. Finally, we compute the excitation of the OH radical in cold molecular clouds and star-forming regions. The new rate coefficients were found to increase the hyperfine intensities by a factor of ∼1–2. Consequently, we recommend using this new set of data in any astrophysical model of OH excitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.