Abstract

We aim to study excitation of the observed 5-min oscillations in the solar corona by localized pulses that are launched in the photosphere. We solve the full set of nonlinear one-dimensional Euler equations numerically for the velocity pulse propagating in the solar atmosphere that is determined by the realistic temperature profile. Numerical simulations show that an initial velocity pulse quickly steepens into a leading shock, while the nonlinear wake in the chromosphere leads to the formation of consecutive pulses. The time interval between arrivals of two neighboring pulses to a detection point in the corona is approximately 5 min. Therefore, the consecutive pulses may result in the 5-min oscillations that are observed in the solar corona. The 5-min oscillations observed in the solar corona can be explained in terms of consecutive shocks that result from impulsive triggers launched within the solar photosphere by granulation and/or reconnection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call