Abstract
AbstractRecently, semidefinite programming performance estimation has been employed as a strong tool for the worst-case performance analysis of first order methods. In this paper, we derive new non-ergodic convergence rates for the alternating direction method of multipliers (ADMM) by using performance estimation. We give some examples which show the exactness of the given bounds. We also study the linear and R-linear convergence of ADMM in terms of dual objective. We establish that ADMM enjoys a global linear convergence rate if and only if the dual objective satisfies the Polyak–Łojasiewicz (PŁ) inequality in the presence of strong convexity. In addition, we give an explicit formula for the linear convergence rate factor. Moreover, we study the R-linear convergence of ADMM under two scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.