Abstract

The algebraic Riccati equation for singularly perturbed control systems is completely and exactly decomposed into two reduced-order algebraic Riccati equations corresponding to the slow and fast time scales. The pure-slow and pure-fast algebraic Riccati equations are asymmetric ones, but their O( epsilon ) perturbations are symmetric. It is shown that the Newton method is very efficient for solving the obtained asymmetric algebraic Riccati equations. The method presented is very suitable for parallel computations. Due to the complete and exact decomposition of the Riccati equation, this procedure might produce new insight into the two-time-scale optimal filtering and control problems.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.