Abstract
We propose a probabilistic setting in which we study the probability law of the Rajaraman and Ullman \textit{RU} algorithm and a modified version of it denoted by \textit{RUM}. These algorithms aim at estimating the similarity index between huge texts in the context of the web. We give a foundation of this method by showing, in the ideal case of carefully chosen probability laws, the exact similarity is the mathematical expectation of the random similarity provided by the algorithm. Some extensions are given. \noindent \textbf{R\'{e}sum\'{e}.} Nous proposons un cadre probabilistique dans lequel nous \'{e}tudions la loi de probabilit\'{e} de l'algorithme de Rajaraman et Ullman \textit{RU} ainsi qu'une version modifi\'{e}e de cet algorithme not\'{e}e \textit{RUM}. Ces alogrithmes visent \`{a} estimer l'indice de la similarit\'{e} entre des textes de grandes tailles dans le contexte du Web. Nous donnons une base de validit\'e de cette m\'{e}thode en montrant que pour des lois de probabilit\'{e}s minutieusement choisies, la similarit\'{e} exacte est l'esp\'{e}rance math\'{e}matique de la similarit\'{e} al\'{e}atoire donn\'{e}e par l'algorithme \textit{RUM}. Des g\'en\'eralisations sont abord\'ees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.