Abstract

Augmented Lagrangian duality provides zero duality gap and saddle point properties for nonconvex optimization. On the basis of this duality, subgradient-like methods can be applied to the (convex) dual of the original problem. These methods usually recover the optimal value of the problem, but may fail to provide a primal solution. We prove that the recovery of a primal solution by such methods can be characterized in terms of (i) the differentiability properties of the dual function and (ii) the exact penalty properties of the primal-dual pair. We also connect the property of finite termination with exact penalty properties of the dual pair. In order to establish these facts, we associate the primal-dual pair to a penalty map. This map, which we introduce here, is a convex and globally Lipschitz function and its epigraph encapsulates information on both primal and dual solution sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.