Abstract
The Path-Planning problem is a basic issue in mobile robotics, in order to allow the robots to solve more complex tasks, for example, an exploration assignment in which the distance given by the planner is taken as a utility measure. Among the different proposed approaches, algorithms based on an exact cell decomposition of the environment are very popular. In this paper, we present a new algorithm for universal path planning in cell decomposition, using a raster scan method for computing the Exact Euclidean Distance Transform (EEDT) for each cell in the map. Our algorithm computes, for every cell in the map, the point sequence to the goal. For each sequence, the sub-goals are selected near to the vertices of the obstacles, reducing the total distance to the goal without post processing. At the end, we obtain a smooth path up to the goal without the need for post-processing. The paths are computed by visibility verification among the cells, exploiting the processing performed in the neighbouring cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.