Abstract
Latent Dirichlet allocation (LDA) obtains essential information from data by using Bayesian inference. It is applied to knowledge discovery via dimension reducing and clustering in many fields. However, its generalization error had not been yet clarified since it is a singular statistical model where there is no one-to-one mapping from parameters to probability distributions. In this paper, we give the exact asymptotic form of its generalization error and marginal likelihood, by theoretical analysis of its learning coefficient using algebraic geometry. The theoretical result shows that the Bayesian generalization error in LDA is expressed in terms of that in matrix factorization and a penalty from the simplex restriction of LDA’s parameter region. A numerical experiment is consistent with the theoretical result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.