Abstract
Agricultural intensification driven by land-use changes has caused continuous and cumulative soil acidification (SA) throughout the global agroecosystem. Microorganisms mediate acid-generating reactions; however, the microbial mechanisms responsible for exacerbating SA feedback remain largely unknown. To determine the microbial community composition and putative function associated with SA, we conducted a metagenomic analysis of soils across a chronosequence that has elapsed since the conversion of rice-wheat (RW) to rice-vegetable (RV) rotations. Compared to RW rotations, soil pH decreased by 0.50 and 1.56 units (p < 0.05) in response to 10-year and 20-year RV rotations, respectively. Additionally, acid saturation ratios were increased by 7.3% and 36.2% (p < 0.05), respectively. The loss of microbial beta-diversity was a key element that contributed to the exacerbation of SA in the RV. Notably, the 20-year RV-enriched microbial taxa were more hydrogen (H+)-, aluminium (Al3+)-, and nitrate nitrogen (NO3−-N) -dependent and contained more genera exhibiting dehydrogenation functions than did RW-enriched taxa. “M00115, M00151, M00417, and M00004” and “M00531 and M00135” that are the “proton-pumping” and “proton-consuming” gene modules, respectively, were linked to the massive recruitment of acid-dependent biomarkers in 20-year RV soils, particularly Rhodanobacter, Gemmatirosa, Sphingomonas, and Streptomyces. Collectively, soils in long-term RV rotations were highly acidified and acid-sensitive, as the enrichment of microbial dehydrogenation genes allowing for soil buffering capacity is more vulnerable to H+ loading and consequently promotes the colonization of more acid-tolerant and acidogenic microbes, and ultimately provide new clues for researchers to elucidate the interaction between SA and the soil microbiome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Science of The Total Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.