Abstract

The regulation of diverse cellular events by proteins that have undergone post-translational modification with ubiquitin is well documented. Ubiquitin can be polymerized and eight types of polyubiquitin chain contribute to the complexity and specificity of the ubiquitin signal. Unexpectedly, recent studies have shown that ubiquitin itself undergoes post-translational modification by acetylation and phosphorylation; moreover, amyloid-like fibrils comprised of polyubiquitin chains have been discovered. Thus, ubiquitin is not only conjugated to substrate proteins, but also modified and transformed itself. Here, we review these novel forms of ubiquitin signal, with a focus on fibril formation of polyubiquitin chains and its underlying biological relevance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.