Abstract

Poly(ADP-ribose) polymerase inhibitors (PARPis) are DNA-damaging agents that trap PARP-DNA complexes and interfere with DNA replication. Three PARPis - olaparib, niraparib, and rucaparib - were recently approved by the FDA for the treatment of breast and ovarian cancers. These PARPis, along with 2 others (talazoparib and veliparib), are being evaluated for their potential to treat additional malignancies, including prostate cancers. While lack of PARP-1 confers high resistance to PARPis, it has not been established whether or not the levels of PARP-1 directly correlate with tumor response. In this issue of the JCI, Makvandi and coworkers describe an approach to address this question using [18F]FluorThanatrace, an [18F]-labeled PARP-1 inhibitor, for PET. The tracer was taken up by patient tumor tissue and appeared to differentiate levels of PARP-1 expression; however, future studies should be aimed at determining if this tracer can be used to stratify patient response to PARPi therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.