Abstract

In silico tools are employed to examine the evolutionary relationship to possible vaccine peptide candidates' development. This perspective sheds light on the proteomic changes affecting the creation of HLA specific T-cell stimulating peptide vaccines for HIV. Full-length sequences of the envelope protein of the HIV subtypes A, B, C and D were obtained through the NCBI Protein database were aligned using CLUSTALW. They were then analyzed using RANKPEP specific to Human Leukocyte Antigen A*02 and B*27. Geneious was used to catalogue the collected gp160 sequences and to construct a phylogenic tree. Mesquite was employed for ancestral state reconstruction to infer the order of amino acid substitutions in the epitopes examined. The results showed that consensus peptide identified SLAEKNITI had changes that indicated predicted escape mutation in strains of HIV responding to pressure exerted by CD8+ cells expressing HLA A*02. The predominating 9-mers IRIGPGQAF of gp120 are significantly less immunogenic toward HLA B*27 than to HLA A*02. The data confirms previous findings on the importance for efficacious binding, of an arginine residue at the 2nd position of the gag SL9 epitope, and extends this principle to other epitopes which interacts with HLA B*27. This study shows that the understanding of viral evolution relating T-cell peptide vaccine design is a development that has much relevance for the creation of personalized therapeutics for HIV treatment.

Highlights

  • Human Immunodeficiency Virus type 1 (HIV), the virus which leads to the development of Acquired Immunodeficiency Syndrome (AIDS), currently infects 33 million individuals and is responsible for over 25 million deaths, leading to a global pandemic [1]

  • This may result from the specificity of conserved epitopes to the alleles associated with the presentation of such amino acid configurations to cytotoxic T lymphocytes (CTL)

  • ancestral state reconstruction (ASR) performed on Mesquite found SLAEEEIII as the most parsimonious ancestral sequence of all sampled strains of HIV for the peptide archetype analyzed for HLA A*02

Read more

Summary

Introduction

Human Immunodeficiency Virus type 1 (HIV), the virus which leads to the development of Acquired Immunodeficiency Syndrome (AIDS), currently infects 33 million individuals and is responsible for over 25 million deaths, leading to a global pandemic [1]. The expression of HLA A*02 has been linked to strong immune response to HIV infection as well as effects on viral load [3, 4] This may result from the specificity of conserved epitopes to the alleles associated with the presentation of such amino acid configurations to cytotoxic T lymphocytes (CTL). This is the case with the HLA-A2 restricted, immunodominant SL9 epitope of Gag. Research has shown that mutation in sequences adjacent to the conserved epitope rarely lead to viral escape, which could be possible through interference with recognition of the antigen [5]. Mutation in that conserved epitope is linked to viral escape and the onset of AIDS in B*27+ individuals [6, 8]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call