Abstract

ABSTRACT We present a possible evolutionary pathway to form planetary nebulae (PNe) with close neutron star (NS)–white dwarf (WD) binary central stars. By employing the binary population synthesis technique, we find that the evolution involves two common envelope evolution (CEE) phases and a core collapse supernova explosion between them that forms the NS. Later the lower mass star engulfs the NS as it becomes a red giant, a process that leads to the second CEE phase and to the ejection of the envelope. This leaves a hot horizontal branch star that evolves to become a helium WD and an expanding nebula. Both the WD and the NS power the nebula. The NS in addition might power a pulsar wind nebula inside the expanding PN. From our simulations we find that the Galactic formation rate of NS–WD PNe is $1.8 \times 10^{-5}\, {\rm yr}^{-1}$ while the Galactic formation rate of all PNe is $0.42 \, {\rm yr}^{-1}$. There is a possibility that one of the observed Galactic PNe might be a NS–WD PN, and a few NS–WD PNe might exist in the Galaxy. The central binary systems might be sources for future gravitational wave detectors like LISA, and possibly of electromagnetic telescopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.