Abstract

Forkhead box E1 (FoxE1) protein is a transcriptional regulator known to play a major role in the development of the thyroid gland. By performing sequence alignments, we detected a deletion in FoxE1, which occurred in the evolution of mammals, near the point of divergence of placental mammals. This deletion led to the loss of the majority of the Eh1 motif, which was important for interactions with transcriptional corepressors. To investigate a potential mechanism for this deletion, we analyzed replication through the deletion area in mammalian cells with two-dimensional gel electrophoresis, and in vitro, using a primer extension reaction. We demonstrated that the area of the deletion presented an obstacle for replication in both assays. The exact position of polymerization arrest in primer extension indicated that it was most likely caused by a quadruplex DNA structure. The quadruplex structure hypothesis is also consistent with the exact borders of the deletion. The exact roles of these evolutionary changes in FoxE1 family proteins are still to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call