Abstract
Resistance to antifolates in Plasmodium falciparum is well described and has been observed in clinical settings for decades. At the molecular level, point mutations in the dhfr gene that lead to resistance have been identified, and the crystal structure of the wildtype and mutant dihydrofolate reductase enzymes have been solved in complex with native substrate and drugs. However, we are only beginning to understand the complexities of the evolutionary pressures that lead to the evolution of drug resistance in this system. Microbial systems that allow heterologous expression of malarial proteins provide a tractable way to investigate patterns of evolution that can inform our eventual understanding of the more complex factors that influence the evolution of drug resistance in clinical settings. In this paper we will review work in Escherichia coli and Saccharomyces cerevisiae expression systems that explore the fitness landscape of mutations implicated in drug resistance and show that (i) a limited number of evolutionary pathways to resistance are followed with high probability; (ii) fitness costs associated with the maintenance of high levels of resistance are modest; and (iii) different antifolates may exert opposing selective forces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.