Abstract
Polyploidy plays an important role in race differentiation and eventually speciation. Underlying mechanisms include chromosomal and genomic changes facilitating reproductive isolation and/or stabilization of hybrids. A prerequisite for studying these processes is a sound knowledge on the origin of polyploids. A well-suited group for studying polyploid evolution consists of the three species of Melampodium ser. Leucantha (Asteraceae): M. argophyllum, M. cinereum, and M. leucanthum. The origin of polyploids was inferred using network and tree-based phylogenetic analyses of several plastid and nuclear DNA sequences and of fingerprint data (AFLP). Genome evolution was assessed via genome size measurements, karyotype analysis, and in situ hybridization of ribosomal DNA. Tetraploid cytotypes of the phylogenetically distinct M. cinereum and M. leucanthum had, compared to the diploid cytotypes, doubled genome sizes and no evidence of gross chromosomal rearrangements. Hexaploid M. argophyllum constituted a separate lineage with limited intermixing with the other species, except in analyses from nuclear ITS. Its genome size was lower than expected if M. cinereum and/or M. leucanthum were involved in its origin, and no chromosomal rearrangements were evident. Polyploids in M. cinereum and M. leucanthum are of recent autopolyploid origin in line with the lack of significant genomic changes. Hexaploid M. argophyllum also appears to be of autopolyploid origin against the previous hypothesis of an allopolyploid origin involving the other two species, but some gene flow with the other species in early phases of differentiation cannot be excluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.