Abstract

Potato virus Y (PVY) is a destructive plant pathogen that causes considerable losses to global potato and tobacco production. Although the molecular structure of PVY is well characterized, the evolutionary and global transmission dynamics of this virus remain poorly understood. We investigated the phylodynamics of the virus by analysing 253 nucleotide sequences of the genes encoding the third protein (P3), cylindrical inclusion protein (CI), and the nuclear inclusion protein (NIb). Our Bayesian phylogenetic analyses showed that the mean substitution rates of different regions of the genome ranged from 8.50 × 10−5 to 1.34 × 10−4 substitutions/site/year, whereas the time to the most recent common ancestor of PVY varied with the length of the genomic regions and with the number of viral isolates being analysed. Our phylogeographic analysis showed that the PVY population originated in South America and was introduced into Europe in the 19th century, from where it spread around the globe. The migration pathways of PVY correlate well with the trade routes of potato tubers, suggesting that the global spread of PVY is associated with human activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call