Abstract

The lexical matrix is an integral part of the human language system. It provides the link between word form and word meaning. A simple lexical matrix is also at the center of any animal communication system, where it defines the associations between form and meaning of animal signals. We study the evolution and population dynamics of the lexical matrix. We assume that children learn the lexical matrix of their parents. This learning process is subject to mistakes: (i) children may not acquire all lexical items of their parents (incomplete learning); and (ii) children might acquire associations between word forms and word meanings that differ from their parents’ lexical items (incorrect learning). We derive an analytic framework that deals with incomplete learning. We calculate the maximum error rate that is compatible with a population maintaining a coherent lexical matrix of a given size. We calculate the equilibrium distribution of the number of lexical items known to individuals. Our analytic investigations are supplemented by numerical simulations that describe both incomplete and incorrect learning, and other extensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call