Abstract

DNA methylation labels a specific subset of genes in plant genomes. Recent work has shown that this gene-body methylation (gbM) is a conserved feature of orthologs, because highly methylated genes in one species tend to be highly methylated in another. In this study, we examined the exceptions to that rule by identifying genes that differ in gbM status between two plant species-Arabidopsis thaliana and Arabidopsis lyrata. Using Capsella grandiflora as an outgroup, we polarized the loss and gain of gbM for orthologs in the Arabidopsis lineage. Our survey identified a few hundred genes that differed between ingroup species, out of ∼9,000 orthologs. The estimated rate of gbM gain was ∼2 × 10-9 per gene per year for both ingroup taxa and was similar to the loss rate in A. lyrata. In contrast, A. thaliana had a ∼3-fold higher estimated rate of gbM loss per gene, consistent with a recent diminishment of genome size. As in previous studies, we found that body-methylated genes were expressed broadly across tissues and were also longer than other genic sets. Genes that differed in gbM status exhibited higher variance in expression between species than genes that were body-methylated in both species. Moreover, the gain of gbM in one lineage tended to be associated with an increase of expression in that lineage. The genes that varied in gbM status between species varied more significantly in length between species than other sets of genes; we hypothesize that length is a key feature in the transition between body-methylated and nonmethylated genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.