Abstract

Evolvability, the ability of populations to adapt, has recently emerged as a major unifying concept in biology. Although the study of evolvability offers new insights into many important biological questions, the conceptual bases of evolvability, and the mechanisms of its evolution, remain controversial. We used simulated evolution of a model of gene network dynamics to test the contentious hypothesis that natural selection can favour high evolvability, in particular in sexual populations. Our results conclusively demonstrate that fluctuating natural selection can increase the capacity of model gene networks to adapt to new environments. Detailed studies of the evolutionary dynamics of these networks establish a broad range of validity for this result and quantify the evolutionary forces responsible for changes in evolvability. Analysis of the genotype-phenotype map of these networks also reveals mechanisms connecting evolvability, genetic architecture and robustness. Our results suggest that the evolution of evolvability can have a pervasive influence on many aspects of organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.