Abstract
In haplodiploids, females can produce sons from unfertilized eggs without mating. However, virgin reproduction is usually considered to be a result of a failure to mate, rather than an adaptation. Here, we build an analytical model for evolution of virgin reproduction, sex-allocation, and altruistic female helping in haplodiploid taxa. We show that when mating is costly (e.g., when mating increases predation risk), virginity can evolve as an adaptive female reproductive strategy. Furthermore, adaptive virginity results in strongly divergent sex-ratios in mated and virgin queen nests ("split sex ratios"), which promotes the evolution of altruistic helping by daughters in mated queen nests. However, when helpers evolve to be efficient and increase nest production significantly, virgin reproduction is selected against. Our results suggest that adaptive virginity could have been an important stepping stone on the pathway to eusociality in haplodiploids. We further show that virginity can be an adaptive reproductive strategy also in primitively social haplodiploids if workers bias the sex ratio toward females. By remaining virgin, queens are free to produce sons, the more valuable sex in a female-biased population. Our work brings a new dimension to the studies linking reproductive strategies with social evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.