Abstract

Divergent selection works when an allele establishes in the subpopulations in which it is adaptive, but not in the ones in which it is deleterious. While such a locally adaptive allele is maintained, the target locus of selection works as a genetic barrier to gene flow or a barrier locus. The genetic divergence (or FST) around the barrier locus can be maintained, while in other regions of the genome, genetic variation can be mixed by gene flow or migration. In this work, we consider theoretically the evolutionary process of a barrier locus, from its birth to stable preservation. Under a simple two-population model, we use a diffusion approach to obtain analytical expressions for the probability of initial establishment of a locally adaptive allele, the reduction of genetic variation due to the spread of the adaptive allele, and the process to the development of a sharp peak of divergence (genomic island of divergence). Our results will be useful to understanding how genomes evolve through local adaptation and divergent selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.