Abstract

In late Mesozoic time, the southern Cordilleran foreland basin was bounded on the west by the Sevier thrust belt and on the south by the Mogollon highlands. Paleocurrent indicators in fluvial and fluviodeltaic strata imply sediment delivery into the basin from both tectonic features. Ages of detrital zircons in sandstones of the basin provide insights into the nature of the sediment sources. Upper Jurassic and Lower Cretaceous fluvial strata were deposited as sediment blankets across the width of the basin but Upper Cretaceous marginal-marine facies were restricted to the basin margin, with marine facies in the basin interior. Most Upper Jurassic and Lower Cretaceous fluvial sandstones contain heterogeneous age populations of Precambrian and Paleozoic detrital zircons largely recycled from Jurassic eolianites uplifted within the Sevier thrust belt or antecedent highlands, and exposed as sedimentary cover over the Mogollon highlands, with only minor contributions of Mesozoic zircon grains from the Cordilleran magmatic arc along the continental margin. Sources in Yavapai-Mazatzal Proterozoic basement intruded by anorogenic Mesoproterozoic plutons along the Mogollon highlands were significant for the Westwater Canyon Member of the Upper Jurassic Morrison Formation and for early Upper Cretaceous (Turonian) fluviodeltaic depositional systems, in which arc-derived Cordilleran zircon grains are more abundant than in older and younger units composed dominantly of recycled detritus. Detrital zircons confirm that the Salt Wash and Westwater Canyon Members of the Morrison Formation formed separate foreland megafans of different provenance. Late Upper Cretaceous (Campanian) fluvial sandstones include units containing mostly recycled sand lacking arc-derived grains in the Sevier foredeep adjacent to the Sevier thrust front, and units derived from both Yavapai-Mazatzal basement and the Cordilleran arc farther east, with some mingling of sand from both sources at selected horizons within the Sevier foredeep. Evidence for longitudinal as well as transverse delivery of sediment to the foreland basin shows that paleogeographic and isostatic analyses of thrust-belt erosion, sediment loads, and basin subsidence in foreland systems need to allow for derivation of foreland sediment in significant volumes from sources lying outside adjacent thrust belts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call