Abstract

The structure and evolution of the inner regions of an accretion disk around a neutron star have been investigated with respect to variations in the mass flow rate. In order to examine the sensitivity of the general response of the disk to the form of viscous dissipation, several theoretical constraints on disk evolution are proposed on the basis of current accretion disk theory. It is shown through a series of calculations that under certain circumstances nonlocal radial energy transfer can stabilize regions of the disk which appear to be unstable by local analysis. When viscous stress was scaled with the total pressure of the disk, global analysis was found to be consistent with local analysis, and instability was manifested in luminosity fluctuations and in bursts of less than 10 s. Analysis of the bursts in their limit cycles showed that the disk remained optically thick and geometrically thin throughout its evolution. Substantial agreement was found between the theoretical results and the available observational data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call