Abstract

AbstractScaling relations are salient ingredients of galaxy evolution and formation models. I summarize results from the IMAGES survey, which combines spatially-resolved kinematics from FLAMES/GIRAFFE with imaging from HST/ACS and other facilities. Specifically, I will focus on the evolution of the stellar mass and baryonic Tully-Fisher Relations (TFR) from z = 0.6 down to z = 0. We found a significant evolution in zero point and scatter of the stellar mass TFR compared to the local Universe. Combined with gas fractions derived by inverting the Schmidt-Kennicutt relation, we derived for the first time a baryonic TFR at high redshift. Conversely to the stellar mass TFR, the baryonic relation does not appear to evolve in zero point, which suggests that most of the reservoir of gas converted into stars over the past 6 Gyr was already gravitationally bound to galaxies at z = 0.6.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call