Abstract

β-Lactamases are a class of well-studied enzymes that are known to have existed since billions of years ago, starting as a defense mechanism to stave off competitors and are now enzymes responsible for antibiotic resistance. Using ancestral sequence reconstruction, it is possible to study the crystal structure of a laboratory resurrected 2-3 billion year-old β-lactamase. Comparing the ancestral enzyme to its modern counterpart, a TEM-1 β-lactamase, the structural changes are minor, and it is probable that dynamic effects play an important role in the evolution of function. We used molecular dynamics simulations and employed transition path sampling methods to identify the presence of rate-enhancing dynamics at the femtosecond level in both systems, found that these fast motions are more efficiently coordinated in the modern enzyme, and examined how specific dynamics can pinpoint evolutionary effects that are essential for improving enzymatic catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.