Abstract
An extensive survey of isozyme phenotypes in British populations of the amphidiploid salt marsh grass Spartina anglica and its putative parents has confirmed that the species arose by chromosome doubling in S. × townsendii, a sterile hybrid between S. maritima and S. alterniflora. Isozyme phenotypes and seed protein profiles indicate that S. anglica is almost totally lacking in genetic variation. Isozyme evidence also indicates that the parental species are characterized by low levels of genetic variation. The lack of variation in S. anglica is proposed as being due to a narrow genetic base resulting from a single origin, or a multiple origin from uniform parents; the fact that many populations are derived from very small founder populations; and because preferential pairing between identical homologous chromosomes prevents recombination between the divergent component genomes of the species. The low levels of isozyme variation that occur appear to be due to chromosome loss. The consequences for the future evolution of S. anglica, given its lack of genetic variation, are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.