Abstract

We model the evolution of plant mating systems under the joint effects of pollen discounting and pollen limitation, using a dynamic model of inbreeding depression, allowing for partial purging of recessive lethal mutations by selfing. Stable mixed mating systems occur for a wide range of parameter values with pollen discounting alone. However, when typical levels of pollen limitation are combined with pollen discounting, stable selfing rates are always high but less than 1 (0.9<s<1 in most cases); in this situation, complete selfing does not evolve because pollen discounting becomes very large at high selfing rates, so that the automatic advantage of selfing changes to a disadvantage. These results suggest that mixed mating systems with high selfing rates can be maintained by selection, whereas mixed mating systems with low to moderate selfing rates are more likely attributable to unavoidable geitonogamous selfing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call