Abstract

Simple extensional models that involve stretching by listric faulting in the brittle upper crust and plastic flow in the lower lithosphere have been shown to account for the subsidence history of various sedimentary basins, continental shelves, and the Central graben in the North Sea. In this paper, the authors present a simplified analysis of the two-layer extensional model for the elementary case in which extension is instantaneous, the crust is thinned by a different amount from the subcrustal lithosphere, the effects of radioactivity and dike intrusion are ignored, and local isostatic compensation is assumed at all times. The authors show how the thinning parameters can be obtained from the subsidence data through the use of a simple and powerful method of data analysis. The authors show that conservation of mass during a process of non-uniform extension implies that much greater thicknesses of sediment can be deposited in a young basin than in the case of uniform extension of both crust and subcrustal lithosphere. Further, the authors show that such an extensional process produces significant uplift of the flanks of a graben and that, as a result of erosion of the uplifted areas, the effective area of the basin can be more » increased as much as 25 to 30%, depending on the rate of erosion, compared to the area that would have been created by a process of uniform extension. Finally, the authors consider the forces of uplift on the flanks in the situation where the crust is treated as a thin elastic plate floating on a fluid upper mantle, the graben is bounded by two major normal faults, and there is subcrustal thinning under the flanks. The authors show that such normal faults produce uplift of the flanks and that this uplift can be significantly increased by the subcrustal thinning. « less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call