Abstract

This paper reports on an experimental investigation to determine the structure and mean flow quantities of round zero-net-mass-flux (ZNMF) jets. These jets are generated by a piston oscillating in a cavity behind a circular orifice. Several different flow patterns were observed with dye flow visualization and a parameter map of these was generated. Cross-correlation digital particle image velocimetry was used to measure instantaneous two-dimensional in-plane velocity fields in a plane containing the orifice axis. These velocity fields are used to investigate the existence of a self-preserving velocity profile in the far field of the ZNMF jet. The mean flow quantities and turbulent statistics of the ZNMF jets were compared with measurements for ‘equivalent’ continuous jets in the same apparatus. Phase-averaged velocity measurements were obtained in the near field of the ZNMF jets and were used to determine the radial entrainment. The out-of-plane vorticity fields were also investigated to gain an understanding of the mechanisms responsible for the difference in spreading rate of ZNMF jets compared to conventional continuous jets. A conceptual model of the ZNMF jet structure in the near field for Strouhal numbers much less than one is proposed that explains the observed behaviour of these ZNMF jets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.