Abstract

Multidrug antibiotic resistance is an urgent public health concern. Multiple strategies have been suggested to alleviate this problem, including the use of antibiotic combinations and cyclic therapies. We examine how adaptation to (1) combinations of drugs affects resistance to individual drugs, and to (2) individual drugs alters responses to drug combinations. To evaluate this, we evolved multiple strains of drug resistant Staphylococcus epidermidis in the lab. We show that evolving resistance to four highly synergistic combinations does not result in cross-resistance to all of their components. Likewise, prior resistance to one antibiotic in a combination does not guarantee survival when exposed to the combination. We also identify four 3-step and four 2-step treatments that inhibit bacterial growth and confer collateral sensitivity with each step, impeding the development of multidrug resistance. This study highlights the importance of considering higher-order drug combinations in sequential therapies and how antibiotic interactions can influence the evolutionary trajectory of bacterial populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.