Abstract
We have studied the evolution of high redshift quiescent galaxies over an effective area of ~1.7 deg^2 in the COSMOS field. Galaxies have been divided according to their star-formation activity and the evolution of the different populations has been investigated in detail. We have studied an IRAC (mag_3.6 < 22.0) selected sample of ~18000 galaxies at z > 1.4 with multi-wavelength coverage. We have derived accurate photometric redshifts (sigma=0.06) and other important physical parameters through a SED-fitting procedure. We have divided our sample into actively star-forming, intermediate and quiescent galaxies depending on their specific star formation rate. We have computed the galaxy stellar mass function of the total sample and the different populations at z=1.4-3.0. We have studied the properties of high redshift quiescent galaxies finding that they are old (1-4 Gyr), massive (log(M/M_sun)~10.65), weakly star forming stellar populations with low dust extinction (E(B-V) < 0.15) and small e-folding time scales (tau ~ 0.1-0.3 Gyr). We observe a significant evolution of the quiescent stellar mass function from 2.5 < z < 3.0 to 1.4 < z < 1.6, increasing by ~ 1 dex in this redshift interval. We find that z ~ 1.5 is an epoch of transition of the GSMF. The fraction of star-forming galaxies decreases from 60% to 20% from z ~ 2.5-3.0 to z ~ 1.4-1.6 for log(M/M_sun) > 11, while the quiescent population increases from 10% to 50% at the same redshift and mass intervals. We compare the fraction of quiescent galaxies derived with that predicted by theoretical models and find that the Kitzbichler & White (2007) model is the one that better reproduces the data. Finally, we calculate the stellar mass density of the star-forming and quiescent populations finding that there is already a significant number of quiescent galaxies at z > 2.5 (rho~6.0 MsunMpc^-3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.