Abstract

Quasi-separatrix layer, also called as QSL, is a region where magnetic connectivity changes drastically, and mostly well coincides with the location of flare ribbons in observations. The research on the relations of this topological structure with the 3-dimensional magnetic reconnection, and solar flares has attracted more and more attention. In this paper, using the theory of QSL we investigate a C5.7 classical two-ribbon solar flare (event 1) which occurred at AR11384 on 2011 December 26, and an M6.5 solar flare (event 2) which occurred at AR12371 on 2015 June 22, respectively. Combining the multi-wavelength data of AIA (Atmospheric Imaging Assembly) and vector magnetogrames of HMI (Helioseismic and Magnetic Imager) onboard SDO (Solar Dynamics Observatory), we extrapolate the coronal magnetic field using the PF (Potential Field) and NLFFF (Nonlinear Force Free Field) models, and calculate the evolution of the AR (Active Region) magnetic free energy. Then, we calculate the logarithmic distribution of Q-factors (magnetic squashing factor) at different heights above the solar photosphere with the results of the PF and NLFFF extrapolations, in order to determine the location of QSL. Afterward, we investigate the evolutionary relation between the QSLs at different heights above the solar photosphere and the flare ribbons observed at the corresponding heights. Finally, we study the multi-wavelength evolution features of the 2 flare events, and obtain by calculation the mean slip velocities of magnetic lines in the event 2 at 304 Å and 335 Å to be 4.6 km s-1 and 6.3 km s-1, respectively. We find that the calculated location of QSL in the chromosphere and corona is in good agreement with the location of flare ribbons at the same height, and the QSLs at different heights have almost the same evolutionary behavior in time as the flare ribbons of the corresponding heights, which highlights the role of QSL in the research of 3D magnetic reconnection and solar flare, and we suggest that the energy release in the flare of event 2 may be triggered by the magnetic reconnection at the place of QSL. We also suggest that the QSL is very important for us to study the essential relation between the 3D and 2D magnetic reconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call